-
1 interplanetary rocket
English-Russian big polytechnic dictionary > interplanetary rocket
-
2 interplanetary rocket
Космонавтика: межпланетная ракета -
3 interplanetary rocket
Англо русский политехнический словарь > interplanetary rocket
-
4 interplanetary rocket
Englsh-Russian aviation and space dictionary > interplanetary rocket
-
5 rocket
( неуправляемая) ракета, см. тж. missile; ракетный двигатель; свеча ( особенно переходящая в восходящую петлю) ; стрелять ракетамиfree(-flight, -fly) rocket — неуправляемая ракета
liquid(-fueled, -propellant, -propelled) rocket — жидкостная ракета или ракетный двигатель
-
6 interplanetary
a межпланетныйСинонимический ряд:off-planet (adj.) alien; exobiological; extraterrestrial; galactic; interstellar; off-planet; space; space-age; unearthly -
7 interplanetary
-
8 interplanetary
-
9 Oberth, Hermann Julius
SUBJECT AREA: Aerospace[br]b. 25 June 1894 Nagyszeben, Transylvania (now Sibiu, Romania)d. 29 December 1989 Nuremberg, Germany[br]Austro-Hungarian lecturer who is usually regarded, with Robert Goddard, as one of the "fathers" of modern astronautics.[br]The son of a physician, Oberth originally studied medicine in Munich, but his education was interrupted by the First World War and service in the Austro-Hungarian Army. Wounded, he passed the time by studying astronautics. He apparently simulated weightlessness and worked out the design for a long-range liquid-propelled rocket, but his ideas were rejected by the War Office; after the war he submitted them as a dissertation for a PhD at Heidelberg University, but this was also rejected. Consequently, in 1923, whilst still an unknown mathematics teacher, he published his ideas at his own expense in the book The Rocket into Interplanetary Space. These included a description of how rockets could achieve a sufficient velocity to escape the gravitational field of the earth. As a result he gained international prestige almost overnight and learned of the work of Robert Goddard and Konstantin Tsiolkovsky. After correspondence with the Goddard and Tsiolkovsky, Oberth published a further work in 1929, The Road to Space Travel, in which he acknowledged the priority of Goddard's and Tsiolkovski's calculations relating to space travel; he went on to anticipate by more than thirty years the development of electric and ionic propulsion and to propose the use of giant mirrors to control the weather. For this he was awarded the annual Hirsch Prize of 10,000 francs. From 1925 to 1938 he taught at a college in Mediasch, Transylvania, where he carried out experiments with petroleum and liquid-air rockets. He then obtained a lecturing post at Vienna Technical University, moving two years later to Dresden University and becoming a German citizen. In 1941 he became assistant to the German rocket engineer Werner von Braun at the rocket development centre at Peenemünde, and in 1943 he began work on solid propellants. After the Second World War he spent a year in Switzerland as a consultant, then in 1950 he moved to Italy to develop solid-propellant anti-aircraft rockets for the Italian Navy. Five years later he moved to the USA to carry out advanced rocket research for the US Army at Huntsville, Alabama, and in 1958 he retired to Feucht, near Nuremberg, Germany, where he wrote his autobiography.[br]Principal Honours and DistinctionsFrench Astronautical Society REP-Hirsch Prize 1929. German Society for Space Research Medal 1950. Diesel German Inventors Medal 1954. American Astronautical Society Award 1955. German Federal Republic Award 1961. Institute of Aviation and Astronautics Medal 1969.Bibliography1923, Die Rakete zu den Planetenraumen; repub. 1934 as The Rocket into Interplanetary Space (autobiography).1929, Wege zur Raumschiffahrt [Road to Space Travel].1959, Stoff und Leben [Material and Life].Further ReadingR.Spangenburg and D.Moser, 1990, Space People from A to Z, New York: Facts on File. H.Wulforst, 1991, The Rocketmakers: The Dreamers who made Spaceflight a Reality, New York: Crown Publishers.KF / IMcN -
10 engine
двигатель; мотор; машинаbuzz up an engine — жарг. запускать двигатель
clean the engine — прогазовывать [прочищать] двигатель (кратковременной даней газа)
engine of bypass ratio 10: 1 — двигатель с коэффициентом [степенью] двухконтурности 10:1
flight discarded jet engine — реактивный двигатель, отработавший лётный ресурс
kick the engine over — разг. запускать двигатель
lunar module ascent engine — подъёмный двигатель лунного модуля [отсека]
monofuel rocket engine — ЖРД на однокомпонентном [унитарном] топливе
open the engine up — давать газ, увеличивать тягу или мощность двигателя
prepackaged liquid propellant engine — ЖРД на топливе длительного хранения; заранее снаряжаемый ЖРД
production(-standard, -type) engine — серийный двигатель, двигатель серийного образца [типа]
return and landing engine — ксм. двигатель для возвращения и посадки
reversed rocket engine — тормозной ракетный двигатель; ксм. тормозная двигательная установка
run up the engine — опробовать [«гонять»] двигатель
secure the engine — выключать [останавливать, глушить] двигатель
shut down the engine — выключать [останавливать, глушить] двигатель
shut off the engine — выключать [останавливать, глушить] двигатель
solid(-fuel, -grain) rocket engine — ракетный двигатель твёрдого топлива
turn the engine over — проворачивать [прокручивать] двигатель [вал двигателя]
-
11 system
система; комплекс; средство; способ; метод; сеть (напр. дорог) ;aiming-navigation system (analog, digital) — прицельно-навигационная система (аналоговая, цифровая)
air observation, acquisition and fire control system — (бортовая) система воздушной разведки, засечки целей и управления огнем
air support aircraft ECM (equipment) system — (бортовая) система РЭП для самолетов авиационной поддержки
airborne (ground) target acquisition and illumination laser system — ав. бортовая лазерная система обнаружения и подсветки (наземных) целей
airborne (ground) targeting and laser designator system — ав. бортовая лазерная система обнаружения и целеуказания (наземных целей)
airborne laser illumination, ranging and tracking system — ав. бортовая система лазерной подсветки, определения дальности и сопровождения цели
artillery (nuclear) delivery system — артиллерийская система доставки (ядерного) боеприпаса (к цели)
C2 system — система оперативного управления; система руководства и управления
C3 system — система руководства, управления и связи; система оперативного управления и связи
channel and message switching (automatic) communications system — АСС с коммутацией каналов и сообщений
country-fair type rotation system (of instruction) — метод одновременного обучения [опроса] нескольких учебных групп (переходящих от одного объекта изучения к другому)
dual-capable (conventional/nuclear) weapon delivery system — система доставки (обычного или ядерного) боеприпаса к цели
electromagnetic emitters identification, location and suppression system — система обнаружения, опознавания и подавления источников электромагнитных излучений [излучающих РЭС]
field antimissile (missile) system — полевой [войсковой] ПРК
fire-on-the-move (air defense) gun system — подвижный зенитный артиллерийский комплекс для стрельбы в движении [на ходу]
fluidic (missile) control system — ркт. гидравлическая [струйная] система управления полетом
forward (area) air defense system — система ПВО передового района; ЗРК для войсковой ПВО передового района
graduated (availability) operational readiness system — Бр. система поэтапной боевой готовности (частей и соединений)
high-resolution satellite IR detection, tracking and targeting system — спутниковая система с ИК аппаратурой высокой разрешающей способности для обнаружения, сопровождения целей и наведения средств поражения
ICBM (alarm and) early warning satellite system — спутниковая система обнаружения пусков МБР и раннего предупреждения (средств ПРО)
information storage, tracking and retrieval system — система накопления, хранения и поиска информации
instantaneous grenade launcher (armored vehicle) smoke system — гранатомет (БМ) для быстрой постановки дымовой завесы
Precision Location [Locator] (and) Strike system — высокоточная система обеспечения обнаружения и поражения целей; высокоточный разведывательно-ударный комплекс
rapid deceleration (parachute) delivery system — парашютная система выброски грузов с быстрым торможением
real time, high-resolution reconnaissance satellite system — спутниковая разведывательная система с высокой разрешающей способностью аппаратуры и передачей информации в реальном масштабе времени
received signal-oriented (output) jamming signal power-adjusting ECM system — система РЭП с автоматическим регулированием уровня помех в зависимости от мощности принимаемого сигнала
sea-based nuclear (weapon) delivery system — система морского базирования доставки ядерного боеприпаса к цели
small surface-to-air ship self-defense (missile) system — ЗРК ближнего действия для самообороны корабля
Status Control, Alerting and Reporting system — система оповещения, контроля и уточнения состояния [боевой готовности] сил и средств
surface missile (weapon) system — наземный [корабельный] РК
target acquisition, rapid designation and precise aiming system — комплекс аппаратуры обнаружения цели, быстрого целеуказания и точного прицеливания
— ABM defense system— antimissile missile system— central weapon system— countersurprise military system— laser surveying system— tank weapon system— vertical launching system— weapons system -
12 system
система; установка; устройство; ркт. комплекс"see to land" system — система посадки с визуальным приземлением
A.S.I. system — система указателя воздушной скорости
ablating heat-protection system — аблирующая [абляционная] система тепловой защиты
ablating heat-shield system — аблирующая [абляционная] система тепловой защиты
active attitude control system — ксм. активная система ориентации
aft-end rocket ignition system — система воспламенения заряда с задней части РДТТ [со стороны сопла]
aircraft response sensing system — система измерений параметров, характеризующих поведение ЛА
air-inlet bypass door system — дв. система перепуска воздуха на входе
antiaircraft guided missile system — ракетная система ПВО; зенитный ракетный комплекс
antiaircraft guided weapons system — ракетная система ПВО; зенитный ракетный комплекс
attenuated intercept satellite rendez-vous system — система безударного соединения спутников на орбите
attitude and azimuth reference system — система измерения или индикации углов тангажа, крена и азимута
automatic departure prevention system — система автоматического предотвращения сваливания или вращения после сваливания
automatic drift kick-off system — система автоматического устранения угла упреждения сноса (перед приземлением)
automatic hovering control system — верт. система автостабилизации на висении
automatic indicating feathering system — автоматическая система флюгирования с индикацией отказа (двигателя)
automatic mixture-ratio control system — система автоматического регулирования состава (топливной) смеси
automatic pitch control system — автомат тангажа; автоматическая система продольного управления [управления по каналу тангажа]
B.L.C. high-lift system — система управления пограничным слоем для повышения подъёмной силы (крыла)
backpack life support system — ксм. ранцевая система жизнеобеспечения
beam-rider (control, guidance) system — ркт. система наведения по лучу
biowaste electric propulsion system — электрический двигатель, работающий на биологических отходах
buddy (refueling, tank) system — (подвесная) автономная система дозаправки топливом в полете
closed(-circuit, -cycle) system — замкнутая система, система с замкнутым контуром или циклом; система с обратной связью
Cooper-Harper pilot rating system — система баллов оценки ЛА лётчиком по Куперу — Харперу
deployable aerodynamic deceleration system — развёртываемая (в атмосфере) аэродинамическая тормозная система
depressurize the fuel system — стравливать избыточное давление (воздуха, газа) в топливной системе
driver gas heating system — аэрд. система подогрева толкающего газа
dry sump (lubrication) system — дв. система смазки с сухим картером [отстойником]
electrically powered hydraulic system — электронасосная гидросистема (в отличие от гидросистемы с насосами, приводимыми от двигателя)
exponential control flare system — система выравнивания с экспоненциальным управлением (перед приземлением)
flywheel attitude control system — ксм. инерционная система ориентации
gas-ejection attitude control system — ксм. газоструйная система ориентация
gas-jet attitude control system — ксм. газоструйная система ориентация
ground proximity extraction system — система извлечения грузов из самолёта, пролетающего на уровне земли
hot-air balloon water recovery system — система спасения путем посадки на воду с помощью баллонов, наполняемых горячими газами
hypersonic air data entry system — система для оценки аэродинамики тела, входящего в атмосферу планеты с гиперзвуковой скоростью
igh-temperature fatigue test system — установка для испытаний на выносливость при высоких температурах
interceptor (directing, vectoring) system — система наведения перехватчиков
ion electrical propulsion system — ксм. ионная двигательная установка
isotope-heated catalytic oxidizer system — система каталитического окислителя с нагревом от изотопного источника
jet vane actuation system — ркт. система привода газового руля
laminar flow pumping system — система насосов [компрессоров] для ламинаризации обтекания
launching range safety system — система безопасности ракетного полигона; система обеспечения безопасности космодрома
leading edge slat system — система выдвижных [отклоняемых] предкрылков
low-altitude parachute extraction system — система беспосадочного десантирования грузов с малых высот с использованием вытяжных парашютов
magnetic attitude control system — ксм. магнитная система ориентации
magnetically slaved compass system — курсовая система с магнитной коррекцией, гироиндукционная курсовая система
mass-expulsion attitude control system — система ориентации за счёт истечения массы (газа, жидкости)
mass-motion attitude control system — ксм. система ориентации за счёт перемещения масс
mass-shifting attitude control system — ксм. система ориентации за счёт перемещения масс
monopropellant rocket propulsion system — двигательная установка с ЖРД на унитарном [однокомпонентном] топливе
nucleonic propellant gauging and utilization system — система измерения и регулирования подачи топлива с использованием радиоактивных изотопов
open(-circuit, -cycle) system — открытая [незамкнутая] система, система с незамкнутым контуром или циклом; система без обратной связи
plenum chamber burning system — дв. система сжигания топлива во втором контуре
positioning system for the landing gear — система регулирования высоты шасси (при стоянке самолёта на земле)
radar altimeter low-altitude control system — система управления на малых высотах с использованием радиовысотомера
radar system for unmanned cooperative rendezvous in space — радиолокационная система для обеспечения встречи (на орбите) беспилотных кооперируемых КЛА
range and orbit determination system — система определения дальностей [расстояний] и орбит
real-time telemetry processing system — система обработки радиотелеметрических данных в реальном масштабе времени
recuperative cycle regenerable carbon dioxide removal system — система удаления углекислого газа с регенерацией поглотителя, работающая по рекуперативному циклу
rendezvous beacon and command system — маячно-командная система обеспечения встречи («а орбите)
satellite automatic terminal rendezvous and coupling system — автоматическая система сближения и стыковки спутников на орбите
Schuler tuned inertial navigation system — система инерциальной навигации на принципе маятника Шулера
sodium superoxide carbon dioxide removal system — система удаления углекислого газа с помощью надперекиси натрия
space shuttle separation system — система разделения ступеней челночного воздушно-космического аппарата
stellar-monitored astroinertial navigation guidance system — астроинерциальная система навигации и управления с астрокоррекцией
terminal control landing system — система управления посадкой по траектории, связанной с выбранной точкой приземления
terminal descent control system — ксм. система управления на конечном этапе спуска [снижения]
terminal guidance system for a satellite rendezvous — система управления на конечном участке траектории встречи спутников
test cell flow system — ркт. система питания (двигателя) топливом в огневом боксе
vectored thrust (propulsion) system — силовая установка с подъёмно-маршевым двигателем [двигателями]
water to oxygen system — ксм. система добывания кислорода из воды
wind tunnel data acquisition system — система регистрации (и обработки) данных при испытаниях в аэродинамической трубе
— D system -
13 vehicle
(авто)транспортное средство; летательный аппарат; ракета, см. тж. aircraft, missile, spacecraft; растворитель, связующее веществоlimited power space vehicle — КЛА с силовой установкой ограниченной тяги [ограниченного ресурса работы]
multipurpose manned entry space vehicle — многоцелевой пилотируемый КЛА, рассчитанный на вход в атмосферу
nonspinning reentry space vehicle — КЛА, нестабилизируемый вращением при входе в атмосферу
nuclear(-powered, -propelled) vehicle — ЛА с ядерной силовой [двигательной] установкой
pogo-stick type lunar surface vehicle — аппарат с пружинным шестом для передвижения по лунной поверхности
space shuttle booster vehicle — ускоритель [стартовый двигатель] челночного воздушно-космического аппарата
spinning reentry space vehicle — КЛА, стабилизируемый вращением при входе в атмосферу
-
14 Braun, Wernher Manfred von
[br]b. 23 March 1912 Wirsitz, Germanyd. 16 June 1977 Alexandria, Virginia, USA[br]German pioneer in rocket development.[br]Von Braun's mother was an amateur astronomer who introduced him to the futuristic books of Jules Verne and H.G.Wells and gave him an astronomical telescope. He was a rather slack and undisciplined schoolboy until he came across Herman Oberth's book By Rocket to Interplanetary Space. He discovered that he required a good deal of mathematics to follow this exhilarating subject and immediately became an enthusiastic student.The Head of the Ballistics and Armaments branch of the German Army, Professor Karl Becker, had asked the engineer Walter Dornberger to develop a solid-fuel rocket system for short-range attack, and one using liquid-fuel rockets to carry bigger loads of explosives beyond the range of any known gun. Von Braun joined the Verein für Raumschiffsfahrt (the German Space Society) as a young man and soon became a leading member. He was asked by Rudolf Nebel, VfR's chief, to persuade the army of the value of rockets as weapons. Von Braun wisely avoided all mention of the possibility of space flight and some financial backing was assured. Dornberger in 1932 built a small test stand for liquid-fuel rockets and von Braun built a small rocket to test it; the success of this trial won over Dornberger to space rocketry.Initially research was carried out at Kummersdorf, a suburb of Berlin, but it was decided that this was not a suitable site. Von Braun recalled holidays as a boy at a resort on the Baltic, Peenemünde, which was ideally suited to rocket testing. Work started there but was not completed until August 1939, when the group of eighty engineers and scientists moved in. A great fillip to rocket research was received when Hitler was shown a film and was persuaded of the efficacy of rockets as weapons of war. A factory was set up in excavated tunnels at Mittelwerk in the Harz mountains. Around 6,000 "vengeance" weapons were built, some 3,000 of which were fired on targets in Britain and 2,000 of which were still in storage at the end of the Second World War.Peenemünde was taken by the Russians on 5 May 1945, but by then von Braun was lodging with many of his colleagues at an inn, Haus Ingeburg, near Oberjoch. They gave themselves up to the Americans, and von Braun presented a "prospectus" to the Americans, pointing out how useful the German rocket team could be. In "Operation Paperclip" some 100 of the team were moved to the United States, together with tons of drawings and a number of rocket missiles. Von Braun worked from 1946 at the White Sands Proving Ground, New Mexico, and in 1950 moved to Redstone Arsenal, Huntsville, Alabama. In 1953 he produced the Redstone missile, in effect a V2 adapted to carry a nuclear warhead a distance of 320 km (199 miles). The National Aeronautics and Space Administration (NASA) was formed in 1958 and recruited von Braun and his team. He was responsible for the design of the Redstone launch vehicles which launched the first US satellite, Explorer 1, in 1958, and the Mercury capsules of the US manned spaceflight programme which carried Alan Shepard briefly into space in 1961 and John Glenn into earth orbit in 1962. He was also responsible for the Saturn series of large, staged launch vehicles, which culminated in the Saturn V rocket which launched the Apollo missions taking US astronauts for the first human landing on the moon in 1969. Von Braun announced his resignation from NASA in 1972 and died five years later.[br]Bibliography1981, with F.L.Ordway, History of Rocketry and Space TravelFurther ReadingP.Marsh, 1985, The Space Business, Penguin. J.Trux, 1985, The Space Race, New English Library. T.Osman, 1983, Space History, Michael Joseph.IMcNBiographical history of technology > Braun, Wernher Manfred von
-
15 vehicle
nтранспортний засіб, тж. літальний апарат, ЛА; космічний корабель, КК•- aerocapture vehicle - aerodynamic orbital plane change vehicle - aerospace vehicle - airborne vehicle - airborne/spaceborne vehicle - air-cushion vehicle - air-liquefaction transatmospheric vehicle - air-scooping nuclear-electric vehicle - air/space vehicle - air vehicle - all-propulsive orbital plane change vehicle - annular jet air cushion vehicle - atmospheric vehicle - ATR-propelled vehicle - ballistic recovery launch vehicle - boosted vehicle - chemical orbital transfer vehicle - combined aerodynamic-propulsive orbital plane change vehicle - controlled vehicle - conventional/laser staged vehicle - current-technology vehicle - descent vehicle - diagonal braked vehicle - earth-to-orbit vehicle - electric-propelled interorbital vehicle - extraterrestrial propellant production method-operated vehicle - ferry space vehicle - fire-fighting vehicle - flying vehicle - future-technology vehicle - gas-turbine vehicle - ground microwave-powered interorbital vehicle - heavier-than-air vehicle - heavy-lift launch vehicle - high-acceleration space vehicle - high I vehicle - highly maneuverable space vehicle - HOTOL vehicle - interplanetary vehicle - interface vehicle - interorbital vehicle - ion propulsion transfer vehicle - laser orbital transfer vehicle - laser-powered launch vehicle - launch vehicle - lifting vehicle - lighter-than-air vehicle - liquid oxygen/hydrocarbon rocket-powered vehicle - liquid oxygen/liquid hydrogen rocket-powered vehicle - low-acceleration space vehicle - LOX/HC rocket-powered vehicle - LOX/LH rocket-powered vehicle - manned maneuvering vehicle - medium-lift launch vehicle - microwave-powered interorbital vehicle - motor vehicle - MPD-powered orbit transfer vehicle - nonterrestrial propellant production vehicle - nonrecoverable vehicle - orbital maneuvering vehicle - orbital propellant-scooping vehicle - orbital transfer vehicle - planetary aerocapture vehicle - pilotless vehicle - ram wing surface effect vehicle - re-entry vehicle - rescue vehicle - reusable launch vehicle - reusable orbital transfer vehicle - rocket-propelled vehicle - SEPS vehicle - shuttle-type vehicle - skip vehicle - small nuclear rocket engine orbital transfer vehicle - SNRE orbital transfer vehicle - space vehicle - space-based orbital transfer vehicle - space shuttle launch vehicle - starprobe vehicle - subsonic vehicle - tanker vehicle - terrestrial laser-propelled sail vehicle - transatmospheric vehicle - unboosted vehicle - unmanned air vehicle - water rescue vehicle - winged surface effect vehicle -
16 flight
полет; рейс; перелёт; звено; летательный аппарат ( в полете) ; ркт. стартовый комплекс; лётный; полётный; бортовой1g flight — прямолинейный горизонтальный полет, полет с единичной перегрузкой, полет без ускорения или торможения
45° climbing inverted flight — набор высоты под углом 45° в перевёрнутом положении
45° climbing knife flight — набор высоты под углом 45° с боковым скольжением, подъём «по лезвию» под углом 45°
45° diving knife flight — пикирование под углом 45° с боковым скольжением, пикирование «по лезвию» под углом 45°
45° sliding flight — набор высоты под углом 45° с боковым скольжением, подъём «по лезвию» под углом 45°
45° sliding flight — пикирование под углом 45° с боковым скольжением, пикирование «по лезвию» под углом 45°
90° climbing flight — вертикальный подъём, отвесный набор высоты
break up in flight — разрушаться в воздухе [в полете]
Doppler hold hovering flight — полет на висении со стабилизацией по доплеровскому измерителю скорости сноса
flight at the controls — полет за рычагами управления (в качестве лётчика, пилотирующего самолёт)
flight on the deck — бреющий полет, полет на предельно малой высоте
— q flight -
17 probe
космическая ракета; исследовательская ракета; зондирующая ракета; штырь; щуп, зонд; пробоотборник; датчик; насадок; образец; топливоприемник ( заправляемого самолёта) ; проба, замер; исследование; зондировать, исследоватьdifferential pressure gust probe — насадок для измерений перепада давлений в порыве (при турбулентной атмосфере)
-
18 Clarke, Arthur Charles
[br]b. 16 December 1917 Minehead, Somerset, England[br]English writer of science fiction who correctly predicted the use of geo-stationary earth satellites for worldwide communications.[br]Whilst still at Huish's Grammar School, Taunton, Clarke became interested in both space science and science fiction. Unable to afford a scientific education at the time (he later obtained a BSc at King's College, London), he pursued both interests in his spare time while working in the Government Exchequer and Audit Department between 1936 and 1941. He was a founder member of the British Interplanetary Society, subsequently serving as its Chairman in 1946–7 and 1950–3. From 1941 to 1945 he served in the Royal Air Force, becoming a technical officer in the first GCA (Ground Controlled Approach) radar unit. There he began to produce the first of many science-fiction stories. In 1949–50 he was an assistant editor of Science Abstracts at the Institution of Electrical Engineers.As a result of his two interests, he realized during the Second World War that an artificial earth satellite in an equatorial orbital with a radius of 35,000 km (22,000 miles) would appear to be stationary, and that three such geo-stationary, or synchronous, satellites could be used for worldwide broadcast or communications. He described these ideas in a paper published in Wireless World in 1945. Initially there was little response, but within a few years the idea was taken up by the US National Aeronautics and Space Administration and in 1965 the first synchronous satellite, Early Bird, was launched into orbit.In the 1950s he moved to Ceylon (now Sri Lanka) to pursue an interest in underwater exploration, but he continued to write science fiction, being known in particular for his contribution to the making of the classic Stanley Kubrick science-fiction film 2001: A Space Odyssey, based on his book of the same title.[br]Principal Honours and DistinctionsClarke received many honours for both his scientific and science-fiction writings. For his satellite communication ideas his awards include the Franklin Institute Gold Medal 1963 and Honorary Fellowship of the American Institute of Aeronautics and Astronautics 1976. For his science-fiction writing he received the UNESCO Kalinga Prize (1961) and many others. In 1979 he became Chancellor of Moratuwa University in Sri Lanka and in 1980 Vikran Scrabhai Professor at the Physical Research Laboratory of the University of Ahmedabad.Bibliography1945. "Extra-terrestrial relays: can rocket stations give world wide coverage?", Wireless World L1: 305 (puts forward his ideas for geo-stationary communication satellites).1946. "Astronomical radar: some future possibilities", Wireless World 52:321.1948, "Electronics and space flight", Journal of the British Interplanetary Society 7:49. Other publications, mainly science-fiction novels, include: 1955, Earthlight, 1956, TheCoast of Coral; 1958, Voice Across the Sea; 1961, Fall of Moondust; 1965, Voicesfrom the Sky, 1977, The View from Serendip; 1979, Fountain of Paradise; 1984, Ascent to Orbit: A Scientific Autobiography, and 1984, 2010: Odyssey Two (a sequel to 2001: A Space Odyssey that was also made into a film).Further Reading1986, Encyclopaedia Britannica.1991, Who's Who, London: A. \& C.Black.See also: Pierce, John RobinsonKF -
19 probe
1. n1) дослідження; зондування2) зонд; дослідницький апарат3) датчик4) проба; зразок5) косм. космічна дослідницька ракета; (автоматична) науково-дослідна станція6) косм. стикувальний пристрій2. v1) досліджувати2) зондувати◊•- atmospheric probe - atmospheric turbulence probe - balloon-borne probe - balloon probe - calibrated pickup probe - cloud physics probe - compatible docking probe - docking probe - Earth-circling probe - eddy current probe - entry probe - float probe - flight refuelling probe - flyby probe - gust probe - inflight refuelling probe - interplanetary probe - interstellar probe - landing probe - lighter-than-air probe - parachuted aspiration probe - radiometer probe - refuelling probe - rocket probe - solar probe - space probe - standard docking probe - surface landing probe - telescopic probe - unmanned interplanetary probe -
20 gas
газ; разг. бензин; топливоbe out of gas — разг. не иметь или испытывать нехватку топлива
step on the gas — дв. давать газ, увеличивать обороты
— end gas— gas up— real gas— test gas
- 1
- 2
См. также в других словарях:
Interplanetary spaceflight — or interplanetary travel is travel between planets within a single planetary system. In practice, spaceflights of this type are confined to travel between the planets of the Solar System. Current achievements in interplanetary travel Remotely… … Wikipedia
Rocket — This article is about vehicles powered by rocket engines. For other uses, see Rocket (disambiguation). A Soyuz U, at Baikonur Site 1/5 A rocket is a missile, spacecraft, aircraft or other vehicle which obtains thrust from a rocket engi … Wikipedia
Rocket Ranger — Infobox VG| title = Rocket Ranger developer = Cinemaware publisher = Cinemaware released = 1988 genre = Action game modes = Single player platforms = Amiga, MS DOS, Commodore 64, Apple IIGS, Atari ST, NES Rocket Ranger is a 1988 action adventure… … Wikipedia
Rocket launch — A rocket launch is the first phase of the flight of a rocket. For orbital spaceflights, or for launches into interplanetary space, rockets are launched from a launch pad, which is usually a fixed location on the ground but may also be on a… … Wikipedia
Rocket launch site — A rocket launch site or launch complex is a facility at which rocket launches are conducted. It has usually one or more launch pads or suitable sites to mount a transportable launch pad. For launch vehicles with liquid propellant, suitable… … Wikipedia
Alan Bond (rocket developer) — Alan Bond (born 1944) is Managing Director of Reaction Engines Ltd [http://www.reactionengines.co.uk] and associated with Project Daedalus, Blue Streak missile, HOTOL, Skylon and the Reaction Engines A2 hypersonic passenger aircraft.Alan Bond is… … Wikipedia
Non-rocket spacelaunch — Non rocket space launch (NRS) is a launch into space where some or all needed speed and altitude is provided by non rocket means, rather than simply using conventional chemical rockets from the ground. A number of alternatives to rockets have… … Wikipedia
Fusion rocket — A fusion rocket is a theoretical design for a rocket driven by fusion power which could provide efficient and long term acceleration in space without the need to carry a large fuel supply. The design relies on the development of fusion power… … Wikipedia
British Interplanetary Society — The British Interplanetary Society (BIS) founded in 1933 by Mr. P.E. Cleator, it is the oldest organisation in the world whose aim is exclusively to support and promote astronautics and space exploration. It is a non profit organisation with… … Wikipedia
Nuclear photonic rocket — In a nuclear photonic rocket, a nuclear reactor would generate such high temperatures that the blackbody radiation from the reactor would provide significant thrust. The disadvantage is that it takes a lot of power to generate a small amount of… … Wikipedia
Congreve rocket — The Congreve Rocket was a British military weapon designed and developed by Sir William Congreve in 1804. The rocket was developed by the British Royal Arsenal following the experiences of the Second, Third and Fourth Mysore Wars. The wars fought … Wikipedia